Introduction to Java: Objects

Java Project: class BankAccount

English name:

©2024 Chris Nielsen — www.nielsenedu.com

1. Understand the following UML class diagram representing two classes. Note the arrow with the dotted line
represents a dependency: the TestBankAccount class is dependent on the BankAccount class. This is
because the TestBankAccount class will create instances of objects of the type BankAccount, and call
methods that are in the class.

r

N
BankAccount 4—— Class Name
e N I
TestBankAccount +accountNumbert int Attributes
+lastName: String .
- +firstName: String (fields)
L +main() +balance: int
- Operations
§ +printAccountInfo() (methods)

Begin with the following code for these two classes, BankAccount and TestBankAccount defined
together in one package. Read through the code and try to understand what it does. You will soon be modifying
the code, so change the second author to your name.

1 /**

2| * This class defines BankAccount objects

3 *

4| * @author christophernielsen

5| * @author fREYFXEER Your English Name

6 *

7\ */

8|public class BankAccount {

9
10 // Instance Fields
11 public int accountNumber;
12 public String lastName;
13 public String firstName;
14 public int balance;
15
16 public void printAccountInfo() {
17 System.out.println("Account Number: " + accountNumber);
18 System.out.println("Owner: " + firstName + " " + lastName);
19 System.out.println("Balance: " + balance);
20 }
21|}

1 /**

2| * The purpose of this class is to test the functionality
3| * of the class BankAccount.

4 *

5| * @author christophernielsen

6| * @author {REYFXERE Your English Name

7 *

8| */

9(public class TestBankAccount {

10

11 public static void main(String[] args) {

12 BankAccount myBankAccount = new BankAccount();
13 BankAccount yourBankAccount = new BankAccount();
14

15 // Add initial code here

16

17 myBankAccount.printAccountInfo();

18 System.out.println();

19 yourBankAccount.printAccountInfo();

20 }

21(}

Page 1 0of 8

Introduction to Java: Objects English name:

Java PFOjECt: C 1aS S Ban kAc count ©2024 Chris Nielsen — www.nielsenedu.com

In the BankAccount class, note the code below the comment //Instance Fields on line 10. Fields are
basically variables that at the top level of a class. In UML diagrams, they are referred to as attributes.
Examine line 12 of TestBankAccount. The latter part, new BankAccount (), instantiates an object
(creates an instance) of type BankAccount. This means that memory is allocated to store a copy of the
instance fields. The values that all the instance fields are set to is sometimes called the state of the object. The
early part of line 12, BankAccount myBankAccount, creates a place to store a reference to the object of
type BankAccount, and labels it myBankAccount. You can think of this reference as a number that gives
the address, or place, in memory where the object is stored. The diagram below may help you to understand.
The shaded boxes represent memory locations. The labels (for example, myBankAccount and balance)
for these memory locations are used while coding in Java, but they do not remain in the final, compiled
program that the computer will run.

BankAccount

accountNumber
lastName
firstName
balance

myBankAccount —

Run the code and verify the output is what you expected. Use the box below to take note of the output:

Account Number:
owner:
Balance:

Account Number:
owner :
Balance:

2. Add code below line 15 in TestBankAccount to change the value of the field named balance of
yourBankAccount to equal 100. Recall that when we accessed static class fields, for example to access
the value for m from the Math class, we use the class name, a period (.), and then the name of the field, PI,
like this: Math.PI. When we have instances of an object, we access the instance (non-static) fields of the
object by using the instance variable name rather than the class name:

yourBankAccount.balance = 100;

Run the program and compare the new output values to the output you took note of in the box above. You
should see that the value of balance in myBankAccount remained zero while the value of balance in
yourBankAccount was updated to 100. The values of the instance fields within an instance of an object
are independent of each other.

Page 2 of 8

Introduction to Java: Objects English name:

Java PFOjECt: C 1aS S Ban kAc coun t ©2024 Chris Nielsen — www.nielsenedu.com
myBankAccount yourBankAccount
BankAccount BankAccount
accountNumber 0 accountNumber 0
lastName null lastName null
firstName null firstName null
balance 0 balance 100

As it is, the code can only store balance as an integer. In the final version of our BankAccount class, we want
to store the currency to two decimal places. But we are not going to use a f Lloat or doub le primitive type to
store the value. Instead, we will use the primitive type int to store the number of cents (or number of 73 if the
currency is Chinese yuan), then divide by 100 whenever we want to get the balance in dollars (or yuan).

Also, it is often safer to disallow other methods to modify the fields of a class directly. Let’s start by preventing
access to the field balance. This is done by changing the access modifier of balance from public to
private:

private int balance;

Try to run the code and see the result. The compiler should output an error that contains details similar to the
following:

The field BankAccount.balance is not visible

So if we cannot access the balance field directly, how are we to change the balance when we withdraw or
deposit currency? The solution is to write methods that are called to indirectly modify the instance fields.
There are a number of advantages to this that you will learn over time. One example of how we might use this
for a bank account object is perhaps you might wish to enforce a maximum withdraw amount. The
BankAccount class itself would not be able to do this if other classes were able to modify the value of the
balance field directly.

So let’s write methods to perform the operations deposit and withdraw on an instance. These methods will
take in the amount as type doub le, round to the nearest hundredth, and store as an integer number of cents
().

Any method that will access or modify instance (non-static) variables cannot have the static modifier
applied. Thus, our method declarations will be:

public void deposit(double amount)
public void withdraw(double amount)

Complete the definitions of these two methods within the BankAccount class, and change the
TestBankAccount class to call the deposit method to deposit 100, rather than attempt to access the
balance field directly. Our updated UML diagram will now look like this:

4)
BankAccount

(TestBankAccount\ +accountNumber: int
> +lastName: String

+firstName: String
L +main() -balance: int

+deposit(amount: double)
+withdrawal(amount: double)
+printAccountInfo()

Page 3 of 8

Introduction to Java: Objects English name:

Java PFOjECt: C 1aS S Ban kAc count ©2024 Chris Nielsen — www.nielsenedu.com

We’ve added the two new methods to the list of operations, and where the balance field previously had a

plus sign (+) in front of it to show it was public, there is now a minus sign (-) in front of it to show it is
private.

When you have completed the changes to the code, run it and note the output. If your code is error free and
conforms to the specifications above, the output should look like this:

Account Number: 0
owner: null null
Balance: 0]

Account Number: 0
owner: null null
Balance: 10000

4. We’re storing the value as specified, but when we call the printAccountInfo method, we’re printing the
value stored in the balance field directly without converting it back to dollars (or yuan). It’s time to fix that.
However, thinking ahead, our banking software will probably also want to query the balance of the account,
not only deposit, withdraw, and print. So first write a public method called getBalance that will return the
dollar (yuan) balance of the account as type doub Le. The updated UML diagram looks like this:

4)
BankAccount

[TestBankAccount) +accountNumber: int
> +lastName: String

+firstName: String
| tmain() -balance: int

+deposit(amount: double)
+withdrawal(amount: double)
+getBalance()

+printAccountInfo()
. J

Once you have the method written, modify printAccountInfo to call the method getBalance to obtain
the balance for printing. The need for this type of method that just returns the value of a field is so common in
object-oriented programming that there is a special name. They are referred to as “getters”. It is standard
practice in Java to name getter methods, as we have done here, by appending “get” to the name of the field,
changing the first letter of the field name to upper case to maintain camel case in the new method name.

Once you have completed getBalance, and updated printAccountInfo, run and verify that the balance
is printed as you expect.

5. Now to update the account owner information. We will make not only getter methods, but also a setter
methods. You can probably guess that while a getter method is used to retrieve the value of a field, a setter
method is used to modify the field value. But before we add these methods, let’s think more about how this
bank software might be used. We might not only want a first and last name to identify our client. We will
probably want information about the identification they used to create the account. Perhaps we should
additionally store their name using Chinese characters if they have a Chinese name. And usually we will want
to record their address and phone number. If we store all this info in our BankAccount class, then if a client
wishes to open two separate bank accounts, we will have all the client information duplicated in the two
instances of BankAccount that belongs to the one client. Also, perhaps there may be reasons to maintain
client information even if they don’t have an account (for example if they wish to close their current account,
but may wish to open one at a later date). While each bank account requires an owner, it seems that the
information associated with the owner doesn’t really fit into this BankAccount class.

The solution to this problem is actually very easy. In the real world, the client and the bank account are two
separate entities. In object-oriented software we make two separate classes.

Create a new class named Client, and follow the UML diagram below to write the code for it. Notice that all
the fields within the class have been made private, and access to them is provided by setter and getter
methods. Also note that the clientNumber field has no setter method. We will write code to set the client

Page 4 of 8

Introduction to Java: Objects English name:

Java PFOjECt: C 1aS S Ban kAc count ©2024 Chris Nielsen — www.nielsenedu.com

number later. When writing the printClientInfo, use the getter methods to retrieve values for the fields
rather than accessing them directly.

() (. \
TestBankAccount Client
""> -clientNumber: int
+main() -lastName: String
L J

-firstName: String

+getClientNumber() : int
+getLastName() : String
+setLastName(lastName: String)
+getFirstName() : String
+setFirstName(firstName: String)
+printClientInfo()

\ J

When writing your setLastName and setFirstName methods, if you follow the UML diagram above
accurately, you will notice that you want to set the instance field LastName, but the parameter of the method
is also called lastName. It is not only acceptable to have parameters with the same name as the instance field
name, it is quite common in practice. When we have this type of ambiguity, the instance field name is appended
to the prefix “this.” to resolve the ambiguity, so your assignment of the parameter LastName to the
instance field lastName will look like this:

this.lastName = lastName;

Test your Client class by adding a few lines of code to your TestBankAccount class. Below is some
example code that you may use as a template to test your code (you are encouraged to do more testing than
these few lines!). Replace the names given your own family name (#) in pinyin for the last name and your
given Chinese name (%) in pinyin, or your English name, for the first name.

Client clientl = new Client();

clientl.setFirstName("Chris");

clientl.setLastName('"Nielsen");
clientl.printClientInfo();

The output of this code should look similar to:

Client Number: 0
Last Name: Nielsen
First Name: Chris

6. Change the setLastName and setFirstName methods so that the length of either name is greater than ten
characters, the length with be truncated to a maximum of ten characters. This choice of ten characters is
arbitrary, and when we hard code a number as a literal, as we must do here, the number may be referred to as a
magic number. When another software developer reads code with a magic number in it, the reasons for
choosing the number may not be obvious. Maintaining and updating the code becomes more difficult. If a
magic number is required, the better way to do it is declare a constant, and use the label for that constant in the
code. Earlier, we discussed the constant 7 in the Math class that is stored in the constant field Math.PI.

In Java, constants are created by adding the modifier final to the field declaration. If any field (or variable) is
declared as final, once it is initialized to a value, that value cannot be changed. The naming convention of
constants in Java is to use all capital letters, with words separated by an underscore (_).

At the top of the Client class, create two final fields, named LAST_NAME_MAX_LENGTH and
FIRST_NAME_MAX_LENGTH, of type int and set the value of each to 10. Then use these two fields when
you write the code to truncate the length of the names passed to methods setLastName and
setFirstName. The field declarations should look like this:

private static final int LAST_NAME_MAX_LENGTH = 10;
private static final int FIRST_NAME_MAX_LENGTH = 10;

Page 50f 8

Introduction to Java: Objects English name:

Java PFOjECt: C 1aS S Ban kAc count ©2024 Chris Nielsen — www.nielsenedu.com

The static modifier is better, but not essential; we will discuss its purpose soon.
Add some code to the TestBankAccount class to test that your Client class properly truncates names to
ten characters.

We will now write a constructor for Client objects. The code we wrote above to test our Client class first
created a new instance of type Client, then initialized values in that object. The purpose of a constructor is
to initialize the object when we create it. This is especially useful when we want to require that some fields be
initialized to a value.

To write a constructor in Java, we write a method with the name exactly the same as the class name that does
not specify a return value (because constructors always return an instance of the class). In this case, the
declaration of the constructor for the Client class, which takes in two parameters of type String that will
be used to set the fields lastName and firstName, will look like this:

public Client(String lastName, String firstName)

Our updated UML diagram will look like this:

e N ' - N
TestBankAccount Client
"":9 -clientNumber: int
+main() -lastName: String
\ J

-firstName: String

+Client(lastName:String,
firstName:String)
+getClientNumber () : int
+getLastName() : String
+setLastName(lastName: String)
+getFirstName() : String
+setFirstName(firstName: String)
+printClientInfo()

\. J/

Write the remainder of the code for this constructor. Rather than setting the instance fields directly, use the
setter methods to set values for LastName and firstName. Doing this allows reuse (as opposed to
duplication) of the code we wrote in the setters to truncate the length of names.

If you wrote your constructor correctly and did not introduce some other error, upon running your code, you
should get an error similar to:

The constructor Client() is undefined

This is because our test code in TestBankAccount still calls the constructor for the Client class without
any parameters with this line:

Client clientl = new Client();

In Java, if you do not explicitly write a constructor for a class, a “default” constructor that does not take any
parameters and does not initialize any field values will be inferred. Once any constructor is explicitly defined,
no default constructor will be inferred. If you wish there to be a constructor that accepts no parameters, you
will need to explicitly define one. For our Client class, it doesn’t really make sense to have a nameless
client, so we will not create a constructor with no parameters. The only way to create a Client is to provide
parameters with values for the fields lastName and firstName.

Modify the test code in the TestBankAccount class so that the values for the fields LastName and
firstName are passed as parameters to the constructor call for Client.

8. We will assign a unique sequential c LientNumber starting from client number zero (©) by keeping a

counter that increments each time we instantiate an instance of a client. Such a counter could be stored in a
class that creates the new instances, but this would complicate things if we want to instantiate instances of the
Client class from multiple classes. It would be most logical to store the counter inside the Client class;
however the instance fields we’ve been created have a different value for each instance of the class we create.
We require a field that has a single value that is shared amongst all the instances. This is what the static
modifier is used for.

Page 6 of 8

Introduction to Java: Objects English name:

Java PFOjECt: C 1aS S Ban kAc count ©2024 Chris Nielsen — www.nielsenedu.com

Add a field named numberOfClients of type int that is modified to be both private and static to
the Client class:

private static int numberOfClients = 0;

Below is a diagrammatic representation of example data using the current Client data structure.

Client
numberofClients
client1l client2
Client Client
clientNumber (C] clientNumber 1
lastName | Nielsen lastName Liu
firstName Chris firstName Angel

For this paragraph, assume all fields in Client were public. For non-static fields, we must access them
through an instance, such as: client2. lastName. An attempt to access a non-static field using the
class name, such as Client . lastName, has no way of working because we do not know which instance of
the class that we want to get LastName from. Do we want clientl. lastName or
client2.lastName? However, for a static field, such as numberOfClients, we are able to access it
it either of two ways — either from the class with Client.numberOfClients, or from any instance such
as this: client2.numberOfClients. The former way is better practice, since it makes it obvious to
readers that the field is static, so do not use an instance of a class to access static fields or methods.

Now back to coding our project. The static field numberOfClients will store a count of the number of
clients (i.e.: the number of instances of the type Client we have instantiated). Since the constructor for the
Client class is called in order to instantiate an object of type Client, if we increment
number0fClients each time the Client constructor is called, it should correctly keep track of the
number of clients we have.

Add code in the Client constructor to increment the numberOfClients counter by one when the
constructor is called. Then, also in the constructor, add code to assign a value to the field clientNumber. It
should be assigned the value that is in numberOfClients before it is incremented so that our
clientNumber will be zero-based.

Also, implement a getter method getNumberOfClients. As this method will only access the static field
number0fClients and will not access or modify any instance (non-static) fields, the method
declaration should include the static modifier. That way an instance of type Client is not required in
order to call the method. The method can simply be accessed using the class name:
Client.getNumberOfClients(). As mentioned, although static methods can also be called using
an instance variable for the class (for example client2.getNumberOfClients()), this is considered
bad practice and should be avoided.

Write code that will instantiate at least three clients to ensure the clientNumber field for each new instance
is assigned the next increasing value, and that your getNumberOfClients method is working properly.

9. Modify the BankAccount class to add a constructor for the class, assign sequential values to the
accountNumber field, and use an instance of the Client class to store the information for the owner of the
account.

Start this by adding a private static variable of type int called numberOfAccounts and initialize it
to zero. Increment this with each new BankAccount that is instantiated, and use it to set the value of the

Page 7 of 8

Introduction to Java: Objects English name:

Java PFOjECt: C 1aS S Ban kAc count ©2024 Chris Nielsen — www.nielsenedu.com

accountNumber field for each instance. Write a getter for this field following the common naming
convention for a getter.

Remove the firstName and lastName fields, and add a private instance (non-static) field named
owner of type Client. Write setter and getter methods for this new field.

Write a constructor for the BankAccount class that takes a single parameter of type Client that contains
the data for the owner of the account. Remember to increment the numberOfAccounts field when a new
instance is created.

The UML diagram for the most recent update to our code is given below. In UML, static attributes (fields)
and operations (methods) are underlined.

' A
TestBankAccount

oot n TTET T R

. § +main() !

1 1

1 1

1 1

4 V 3\ 4 _/ 3\
BankAccount Client
-numberOfAccounts: int -numberOfClients: int
—accountNumber: int -clientNumber: int
-owner: Client -lastName: String
-balance: int -firstName: String
+BankAccount (owner: Client) 0..* l' +Client(lastName:String,
+getNumberOfAccounts() : int firstName:String)
+getAccountNumber() : int +getNumberOfClients() : int
+getOwner() : Client +getClientNumber() : int
+Set0Wner(neWOWner: Cllent) +getLastName() : String
+deposit(amount: real) +setLastName(lastName: String)
+withdrawal(amount: real) +getFirstName() : String
+getBalance() +setFirstName(firstName: String)
\+pr1ntAccountInfo()) | +printClientInfo())

Update your TestBankAccount code to test the newly implemented functionality.

10. Currently, in both the BankAccount class and the Client class there are methods that print out the state of
the instance (the values stored in the fields). This is coupling the functionality of these classes with
functionality of a user interface. We will not be implementing a sophisticated user interface, however, let us
remove the functionality related to the user interface from each of these classes. (In actual fact, an additional
reason to do this is to minimize coupling between these two classes when we implement additional
functionality in the next step.)

Remove method printAccountInfo from the BankAccount class, and remove method
printClientInfo from the Client class. Add code to the TestBankAccount class to implement
similar functionality.

Page 8 of 8

